OmniTrax®
Ranging buried cable intrusion detection sensor

Features & Benefits

- Up to 800 m (1/2 mi.) of protection per sensor processor
- Locates intruders to within ±1 m (3.3 ft.) with a 95% confidence
- Operates through vegetation (grass, shrubs and trees)
- Insensitive to wind, rain, snow, hail, sandstorms, fog, extreme temperatures, seismic vibration, acoustic, magnetic effects or blowing debris
- Detects and accurately locates multiple simultaneous intrusions
- Low NAR and high Pd
- Sensor networking - power and data over cable reduces installation costs and provides inherent data security
- Enhanced diagnostic tools - using Universal Configuration Module (UCM)
- Up to 5 processors protecting up to 4 Km (2.5 miles) of perimeter for each power connection point
- Up to 60 processors protecting up to 48 Km (29.3 miles) of perimeter can be networked on one network loop
- Completely covert and site aesthetics left unchanged
- Alarm assessment and response can be focused exactly on the point of intrusion
- Tamper proof
- Silver Network™ - enhanced communications
- Graded sensitivity cables - optimal performance
- Lowest Vulnerability to defeat (Vd) of any outdoor perimeter intrusion detection sensor

VOLUMETRIC SENSORS - BURIED

DESCRIPTION
OmniTrax® is the fifth generation, covert outdoor perimeter security intrusion detection sensor that generates an invisible radar detection field around buried sensor cables. If an intruder disturbs the field, an alarm is declared and the location of the intrusion is determined. Targets are detected based on their conductivity, size and movement.

APPLICATION
Sensor cables can be direct-buried in a variety of mediums including most normal soil types, asphalt and concrete. In soil the cables are buried approximately 23 cm (9 in.) below the surface. In asphalt and concrete slots are cut approximately 6 cm (2.25 in.) deep. The terrain-following, volumetric detection field is typically 1 m (3.28 ft.) high by 3 m (9.84 ft.) wide by up to 800 m (2625 ft. or 1/2 mile) long per sensor processor. Systems can be standalone or networked for long perimeters whereby sensor cables are connected together to create a continuous perimeter.
HOW IT WORKS

OmniTrax uses ported (“leaky”) coaxial sensor cables to create an invisible electromagnetic detection field. The cables are designed with apertures in the transmit cable’s outer conductor which allow energy to escape and be retrieved by the corresponding parallel receive cable. OmniTrax uses a patented coded pulse signal technique to determine the exact intrusion location, which can identify multiple intruders simultaneously.

Detection is based on the intruder’s electrical conductivity, size and speed. The Probability of detection (Pd) for an upright 35 kg (77 lbs.) intruder, penetrating through the detection field and moving between 50 mm (2 in.) per second to 8 m (26 ft.) per second is greater than 99%, with 95% confidence. Objects weighing less than 10 kg (22 lbs.) are rejected with a statistical confidence level of 95%. Any attempt to tamper with the cables, the processor or its enclosure, causes an alarm.

OmniTrax sensor calibration is simple. Walking down the sensor cables while in calibration mode allows the system to automatically adjust to the sensitivity of each meter (3.3 ft.) and thus compensates for site variations. Buried cable installation has never been so easy with calibrated thresholding.

Each OmniTrax processor can divide the perimeter protected by its two cable sets into as many as 50 alarm zones. Zones can be changed at any time by technical personnel using the UCM software.

RANGING TECHNOLOGY - BENEFITS

- Reduced installation costs
- Uniform detection field reduces nuisance alarms
- Flexibility for any environment
- Simplifies troubleshooting
- Source of nuisance alarms accurately located
- Minimal sensor downtime
- Support analysis done remotely over secure links

INTEGRAL POWER AND DATA

In addition to detecting intruders, OmniTrax cables are used to distribute power from a single source to the sensor processors, as well as collect alarm and status data from each processor over the Silver Network™ for transmission to a control and display system like StarNet™ 1000, Alarm Integration Module (AIM) or 3rd party system. OmniTrax is unique in providing detection, power distribution and data collection over the same set of buried cables. Full redundancy for both power distribution and data collection is also possible.

SENSOR CABLES

Sensor cables also carry alarm information and low voltage power throughout the perimeter, saving installation time and money. Cables can provide bidirectional power and communications to provide full redundancy in the event that a cable is cut or damaged.

Sensor cables are available in three configurations:

1) OC2 cable sets have separate transmit and receive cables and are available in active lengths of 300 m (984 ft.) and 400 m (1312 ft.). They can be spaced a maximum of 2 m (79 in.) and a minimum of 10 cm (4 in.) apart. The maximum spacing results in a detection field of roughly 1 m (3.3 ft.) high by 3 m (9.9 ft.) wide. The actual field size will depend on burial depth, burial medium, cable separation and the threshold settings of the sensor. The narrow spacing option saves considerable installation cost by allowing both cables to be placed in a single trench. The cables are graded to extend the cables’ range to a maximum of 400 m (1312 ft.) in length while maintaining uniform sensitivity, the longest offered by any buried system. OC2 is typically used in applications that can achieve cost savings by using longer cable runs.

2) SC1 has transmit and receive cables in a single jacket. These cables are used in single trench or single slot applications, thus
reducing installation time and expense. The resulting detection field is typically 1 m (3.3 ft.) high and 2 m (6.6 ft.) wide. The actual field size will depend on burial depth, the burial medium and the threshold settings to the sensor. SC1 cables are offered in 50 m (165 ft.) increments up to 200 m (656 ft.). Certain installation restrictions exist for SC1 cable - contact your Senstar representative for details.

3) SC2 cable sets have separate transmit and receive cables and are available in 50 m (165 ft.) increments up to 200 m (660 ft.). They can be spaced a maximum of 2 m (79 in.) and a minimum of 10 cm (4 in.) apart. The maximum spacing results in a detection field that is typically 1 m (3.3 ft.) high and 3 m (9.9 ft.) wide. The actual field size will depend on burial depth, burial medium, cable separation and the threshold settings of the sensor. The narrow spacing option saves considerably on installation cost by allowing both cables to be placed in a single trench. The cables are graded to provide uniform sensitivity over the full length of the cable and can be cut to fit any application.

SILVER NETWORK

OmniTrax processors can communicate alarm, status and configuration information to and from a central point using a networked capability referred to as Silver Network. Senstar’s Silver Network uses a loop topology with separate transmit and receive point-to-point links between each OmniTrax processor or other connected Silver Network-compatible equipment. Silver Network is designed to be polled from both ends of the loop, thus providing redundant data paths to the field equipment. Point-to-point links can be EIA-422, single or multimode fiber, or over the OmniTrax sensor cables. The data signal is completely regenerated at each node in the loop to ensure proper signal integrity and reliable data transmission. Running Silver Network over the same cables as OmniTrax saves costs by eliminating the need for a separate perimeter network and provides an inherently tamper-proof communications path.

Communications over Silver Network is managed by a Windows® PC running Silver Network Manager (SNM) software. SNM controls network communications and passes OmniTrax alarm and status information to a control and display system such as StarNet 1000, AIM or 3rd party system. The interface between the PC hardware and Silver Network-compatible field units, such as the OmniTrax processor, is provided by the Silver Network Interface Unit (SNIU).

Full details on OmniTrax’s networking and integration capabilities can be found in Senstar’s ultralink Sensor Integration Components data sheet.

UNIVERSAL CONFIGURATION MODULE (UCM)

The UCM is an easy-to-use software tool that provides real-time feedback for use during OmniTrax calibration and setup. The UCM is Windows® based and can be used on a personal desktop or laptop computer. It is connected directly to the processor using a Universal Serial Bus (USB) interface or through Silver Network. The UCM eliminates the need for specialized electronic measurement equipment, greatly reduces the configuration time and effort, and facilitates factory support with its enhanced diagnostic tools.

OMNITRAX NETWORKED SYSTEM

![Diagram of OmniTrax Networked System]
PERFORMANCE
- Probability of detection (Pd) - Optimized for the detection of an upright 35 kg (77 lbs.), or larger person moving between 5 cm (2 in.) per second to 8 m (26 ft.) per second, with a probability of detection of 99% with 95% confidence. This is based on penetration of the intruder through the detection zone.
- False Alarm Rate (FAR) - Fewer than 1 per zone per month alarms from unknown causes with full visual assessment.
- Nuisance Alarm Rate (NAR) - Site dependent.

PROCESSOR MAIN FEATURES
- Processes two cable pairs.
- Alarm reporting:
 - Up to 50 functional segments per cable pair.
 - Up to 50 alarm reporting zones per processor.
- Relay outputs:
 - Form C, 1.0 A, 30 VDC max.
 - Function of each relay can be assigned based on requirement.
 - Assignable functions include: zone alarm, cable A supervision, cable B supervision, enclosure tamper, input power fail, battery fail, miscellaneous hardware fault, fail-safe.
- Relay activation time programmable from 0.125 to 10 seconds.
- Expandable with relay output card.
- Auxiliary inputs:
 - 2 supervised inputs.
 - Expandable with universal input card.
- Lightning protection:
 - Tranzorb and non-radioactive gas discharge devices on all I/O ports.
- USB port.

PROCESSOR OPTIONS
EIA-422 communications card
- Mounts on processor expansion header.
- Supports two EIA-422 (4-wire) data paths.
- True regeneration of signal (removes distortion at each node).
- Every processor in a network configuration requires a communications card.

Fiber optic communications cards
- Mounts on processor expansion header.
- Supports two fiber optic data paths or one fiber optic data path and one EIA-422 path.
- Multimode fiber optic communication card allows distances of up to 2.2 km (7,200 ft.).
- Multimode fiber optic card card operates at 820 nm, comes with ST connectors and is compatible with 50/125 μm, 62.5/125 μm, 100/140 μm, and 200 μm HCS® multimode fiber.
- Single-mode fiber optic communication card allows distances of up to 10 km (32,000 ft.).
- Single-mode fiber optic card operates at 1310 nm, comes with ST connectors and is compatible with 9/125 single-mode fiber.
- True regeneration of signal (removes distortion at each node).
- Every processor in a network configuration requires a communications card.

Input/output cards
- Mounts on processor expansion header.
- The OmniTrax processor can accept 1 optional input/output card in addition to a communications card.
- Relay output card: 8 Form C relay outputs (1.0 A, 30 VDC max).
- Universal input card: 8 inputs with configurable thresholds and supervision modes.

Auxiliary power supply
- Accepts 18 to 48 VDC.
- Output 12 VDC, 150 mA.

PACKAGING / ENVIRONMENTAL
Processor on a base plate in a white aluminum CSA/UL Type 4X enclosure:
- Size: 40 H x 23.5 W x 16.5 cm D (15.75 H x 9.25 W x 6.5 in. D).
- -40°C to +70°C (-40°F to +158°F)
- Relative humidity to 95% non-condensing.
- Protective telecom enclosure accepts OmniTrax enclosure:
 - Size: 98.4 H x 42.5 W x 27.3 cm D (38.8 H x 16.8 W x 10.8 in. D).
 - Color: light green enamel over steel.
 - Protection: IP33.

POWER REQUIREMENTS
- 12 to 48 VDC input voltage at less than 9 watts.
- Integrated internal 5 Ah battery backup.

SENSOR CABLE SC1
- Two cables per processor.
- Transmit and receive cable in a single jacket.
- Contiguous graded design with lead-in and active cable.
- Lead-in length 20 meters (66 ft.)
- Active cable lengths of 50, 100, 150 or 200 meters (164, 328, 492 or 656 ft.)
- Cable jacket size 8.5 x 15 mm (0.335 x 0.590 in.)
- Each cable set comes with a kit of 4 TNC connectors, 10 ferrite beads, and marker tape.

CABLE ACCESSORIES
- Standalone and network decouplers.
- Terminator kits / connector tool kits / cable repair kits.
- Ferrite beads / connectors.

SILVER NETWORK™
- Silver Network Interface Unit (SNIU) - reliable lightning protected computer interface.
- Silver Network Manager (SNM) - software interface to “head-end” Security Management System (SMS) such as StarNet 1000, Alarm Integration Module (AIM) or 3rd party system.
- Provides alarm data including pinpoint target location.
- Provides diagnostic data to support remote UCM operation.

SILVER NETWORK™ REPEATERS FOR LONG NETWORK RUNS
- EIA-422 to EIA-422.
- Multi-mode fiber to multi-mode fiber.
- EIA-422 to multi-mode fiber.
- Accepts 12 - 48 VDC.
- Built-in battery charger.

GENERAL ACCESSORIES
- 48 V outdoor-rated network power supply.
- 12 V outdoor-rated single processor supply.
- Lightning arrester kit.

REGULATORY COMPLIANCE
- Safety: IEC 60950-1, CSA 60950-1-03, SELV supplied, Class 1.
- RoHS.

The OmniTrax buried cable detection system is protected by US patents 5,914,655 and 5,834,688 (with others pending) and other international patents.

Specifications are subject to change without prior notice.